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Abstract
Background  Vestibular migraine (VM) and Menière’s disease (MD) are two common causes of recurrent spontaneous 
vertigo. Using history, video-nystagmography and audiovestibular tests, we developed machine learning models to separate 
these two disorders.
Methods  We recruited patients with VM or MD from a neurology outpatient facility. One hundred features from six “feature 
subsets”: history, acute video-nystagmography and four laboratory tests (video head impulse test, vestibular-evoked myogenic 
potentials, caloric testing and audiogram) were used. We applied ten machine learning algorithms to develop classification 
models. Modelling was performed using three “tiers” of data availability to simulate three clinical settings. “Tier 1” used all 
available data to simulate the neuro-otology clinic, “Tier 2” used only history, audiogram and caloric test data, representing 
the general neurology clinic, and “Tier 3” used history alone as occurs in primary care. Model performance was evaluated 
using tenfold cross-validation.
Results  Data from 160 patients with VM and 114 with MD were used for model development. All models effectively sepa-
rated the two disorders for all three tiers, with accuracies of 85.77–97.81%. The best performing algorithms (AdaBoost and 
Random Forest) yielded accuracies of 97.81% (95% CI 95.24–99.60), 94.53% (91.09–99.52%) and 92.34% (92.28–96.76%) 
for tiers 1, 2 and 3. The best feature subset combination was history, acute video-nystagmography, video head impulse test 
and caloric testing, and the best single feature subset was history.
Conclusions  Machine learning models can accurately differentiate between VM and MD and are promising tools to assist 
diagnosis by medical practitioners with diverse levels of expertise and resources.

Keywords  Artificial intelligence · Menière’s disease · Vestibular migraine

Introduction

Vertigo is a false sensation of movement caused by disorders 
affecting the inner ear balance organs and their connections 
with the central nervous system. It is common, disabling 
and treatable, yet is undertreated worldwide. Recurrent ver-
tigo that occurs at rest without provocation, also known as 
“recurrent spontaneous vertigo”, is most often caused by 
one of two disorders: vestibular migraine (VM) or Menière’s 
disease (MD) [8, 23]. VM is diagnosed based on association 
with migraine headaches and migraine-related symptoms 
such as photophobia, phonophobia, visual aura and motion 
sensitivity [17], while MD, which is attributed to excessive 
fluid accumulation in the endolymph compartment of the 
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inner ear, is associated with fluctuating hearing loss, tinnitus 
and fullness affecting one ear [18].

As VM and MD are treated differently, the correct diag-
nosis is essential for optimal management. There is no 
definitive diagnostic test for either condition, so neuro-otol-
ogists separate VM and MD by seeking clues in the history, 
physical examination and laboratory tests of hearing and 
balance. For example, patients with MD report spinning ver-
tigo that lasts 20 min to 12 h [18], whereas episodes of VM 
can last seconds to days [14, 24, 44]. Migraine symptoms 
such as headache and/or photophobia accompany vertigo in 
95% of VM [19, 24], although they also occur in 29–45% 
of MD patients during their vertigo attacks [12, 24, 31]. 
Aural symptoms (hearing loss, tinnitus and fullness) com-
monly occur with vertigo in MD (51–83%) [19, 24], yet are 
also reported by 15–54% of patients with VM [14, 24, 44]. 
Examination of an asymptomatic patient is frequently unre-
markable for both VM [29] and MD [43]. However, when 
assessed during vertigo attacks, patients with MD may dem-
onstrate diagnostic eye movement abnormalities: typically, 
high-velocity spontaneous horizontal nystagmus, which may 
also spontaneously change direction within 12 h of vertigo 
onset [41]. In contrast, VM may demonstrate low-velocity 
nystagmus of diverse directions or no nystagmus [39]. Tests 
that assess the inner ear balance organs may demonstrate 
abnormalities in distinctive patterns that help identify the 
cause of vertigo. It is now possible to assess the function of 
all five vestibular end-organs (the three semicircular canals 
which sense rotation and the two otolith organs which sense 
linear acceleration) using laboratory tests [5, 20, 21, 35]. 
The caloric test, a method of comparing the integrity of the 
horizontal semicircular canals, shows abnormal results in up 
to 75% of patients with MD [24, 37] but only 25% of patients 
with VM [2, 14]. The cervical and ocular vestibular-evoked 
myogenic potentials (cVEMPs and oVEMPs) are tests of 
otolith function. In patients with MD, 38–45% of cVEMPs 
and 32–65% of oVEMPs are abnormal [13, 43], whereas 
both tests usually show normal results in VM [14, 37]. An 
audiogram demonstrating low-frequency hearing loss is very 
suggestive of MD [12], whereas patients with VM usually do 
not have hearing loss [2, 24]. The current diagnostic work-
flow used by neuro-otologists to distinguish between causes 
of recurrent spontaneous vertigo is summarised in Fig. 1.

We hypothesised that clinical information used by experts 
(structured history, nystagmus characteristics and vestibular 
function tests) could be used to train a machine learning 
algorithm to perform the classification task of a neuro-otol-
ogist. Previous investigators have used decision tree and neu-
ral network techniques to develop models for identifying 
VM or MD [11]. Their neural network models performed 
best, with accuracies of 98.4% for isolating VM from other 
vestibular disorders and 98.0% for isolating MD. However, 
these high accuracies likely reflect the fact that their models 

were designed to identify either VM or MD from a pool of 
several causes of dizziness, some of which have very dif-
ferent characteristics, rather than the harder task of distin-
guishing between two conditions which both often present 
as recurrent spontaneous vertigo and share clinical features.

In the present study, we limited our patients to just VM 
and MD, which can be difficult to separate clinically. The 
aim of this study was to develop and validate a machine 
learning model that could use the same information that is 
used by a neuro-otologist to classify recurrent spontaneous 
vertigo into VM or MD with a level of accuracy similar to 
an expert. The clinical diagnosis made by an experienced 
neuro-otologist with access to a full suite of laboratory 
tests was taken as the “gold standard” against which the 
performance of the developed machine learning models 
was compared. We also explored the performance of mod-
els developed using limited datasets simulating what would 
be available to general neurologists/otolaryngologists and 
primary care physicians. Our vision was to develop tools 
of assisted diagnosis usable by all healthcare practitioners 
who encounter patients with recurrent spontaneous vertigo.

Materials and methods

Participants

Adult patients who were seen in the neuro-otology outpatient 
clinic at Royal Prince Alfred Hospital from August 2014 to 
September 2021 for recurrent vertigo were consecutively 
recruited with informed consent. Patients were included 
if at initial or subsequent review they met Bárány Society 
diagnostic criteria for confirmed or probable VM [17] or 
MD [18] as determined by an experienced neuro-otologist 
(authors MW, GMH) and when ≥ 50% of the vestibular tests 
were undertaken. Patients who met criteria for both diagno-
ses were excluded. Data obtained during assessment across 
100 variables from the categories of history, acute video-
nystagmography (VNG), and four laboratory tests were used 
for model development. The variables are detailed in Sup-
plementary Table 1.

History

A standardised history generated 33 variables including dis-
ease length (years), vertigo trigger (spontaneous, positional 
or both), quality of vertigo (rotatory or non-rotatory, with 
or without imbalance), duration of shortest and longest ver-
tigo attacks (seconds, minutes, hours, days), associated audi-
tory symptoms (tinnitus, aural fullness, subjective hearing 
loss, fluctuations in hearing), associated migraine-related 
symptoms (headache, photophobia, phonophobia, visual 
aura) and cardiovascular risk factors (hyperlipidaemia, 
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hypertension, diabetes, atrial fibrillation, family history of 
vascular disease).

Video‑nystagmography

Miniature portable video glasses (Neuromed Electronics, 
Sydney, Australia) were used by patients to self-record any 
nystagmus present during a vertigo attack; this technique 
of home-recording was recently developed and validated 

Fig. 1   Current diagnostic work-
flow used by neuro-otologists 
for patients with recurrent 
spontaneous vertigo. From the 
history, a medical practitioner 
can distinguish recurrent spon-
taneous vertigo from the other 
vertigo presentations of acute 
vestibular syndrome and recur-
rent positional vertigo. Video-
nystagmography and labora-
tory tests are then performed, 
following which the most likely 
diagnosis is determined. *Other: 
this includes rarer causes of 
recurrent spontaneous vertigo 
such as posterior circulation 
ischaemia, autoimmune inner 
ear disease and vestibular 
paroxysmia. VEMPs vestibular-
evoked myogenic potentials, 
VHIT video head impulse test

History

Laboratory Tests

Expert Diagnosis

Recurrent 
Syndrome

VHIT

VEMPs

Caloric
Test

Audio
gram
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[41]. Nystagmus was recorded in the upright, supine and 
side-lying positions. Variables included nystagmus direc-
tion (horizontal, vertical or absent), whether the nystagmus 
changed direction spontaneously and the nystagmus slow-
phase velocity (SPV) in degrees per second. When multiple 
video records were made, the fastest SPV was used.

Laboratory tests of inner ear hearing and vestibular 
function

All patients were offered all four tests chosen by neuro-otol-
ogists seeking to assess the hearing and vestibular organs: 
the caloric test and video head impulse test (VHIT) for hori-
zontal semicircular canal function [21], vestibular-evoked 
myogenic potentials (VEMPs) to assess the otolith organs 
(oVEMP for the utricle and cVEMP for the saccule) [5, 35] 
and pure-tone audiogram to test cochlear function. The labo-
ratory tests were performed when patients were asympto-
matic. Figure 2a illustrates the end-organ assessed by each 
test, together with an exemplative test result.

VHITs were performed on the horizontal canals using 
ICS Impulse USB goggles (Natus, CA, USA) and analysed 
with custom software using previously described methods 
[42, 43]. Variables generated from VHIT included the gain 
of the vestibulo-ocular reflex, saccade frequency (%), total 
saccade displacement (degrees), first saccade displacement 
(degrees), first saccade peak velocity (degrees per second), 
first saccade onset time (ms) and first saccade duration (ms).

Both oVEMPs and cVEMPs were recorded using a 
Natus Medelec Synergy device (version 20.0, CA, USA) 
in response to both air-conducted (AC) clicks and bone-
conducted (BC) forehead taps using previously described 
methods [42, 43]. For AC and BC oVEMPs, data were col-
lected on reflex peak-to-peak amplitude (µV), n1 latency 
(ms) and the asymmetry ratio between left and right ears 
as calculated using Jongkees’ formula as shown in Eq. (1). 
For AC and BC cVEMPs, data were collected on corrected 
reflex amplitude (ratio of peak-to-peak amplitude to baseline 
sternocleidomastoid activation), p13 latency (ms) and the 
asymmetry ratio.

Pure tone audiometry was performed with air-conduction 
and bone-conduction transducers. Those with an air–bone 
gap of ≥ 15 dB HL (decibels hearing level) at any frequency 
were excluded. Air-conduction thresholds were recorded 
for the 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 6000 
Hz and 8000 Hz frequencies. Bithermal caloric testing was 
performed using widely used methods with cold (30°) and 
hot (44°) water for 25–40 s. Nystagmus SPV in response to 
cold and warm water stimulation and left–right asymmetry 

(1)

Asymmetry ratio =
Left ear amplitude − right ear amplitude

Left ear amplitude + right ear amplitude
× 100.

(absolute canal paresis and absolute directional preponder-
ance) was calculated using Jongkees’ formula [15].

Machine learning modelling

We employed an iterative process for developing and evalu-
ating the machine learning models, starting from problem 
formulation, through to data acquisition, pre-processing, 
modelling, validation and evaluation of the proof-of-concept 
models.

Problem formulation

We formulated the problem as determining the disease class, 
namely VM or MD, using machine learning techniques on 
all the variables (termed “features” in machine learning) 
arranged into six categories (“feature subsets”): history, 
VNG, VHIT, VEMPs, audiogram and caloric testing. We 
applied machine learning to three combinations, or “tiers”, 
of feature subsets. The first combination (“Tier 1”) included 
all the feature subsets and simulated the data obtainable in 
a neuro-otology clinic. However, as not all tests are avail-
able to non-expert specialists (general neurologists or oto-
laryngologists) or primary care physicians, we also used two 
restricted feature subset combinations. One of these (“Tier 
2”) simulated the non-expert specialist’s clinic by limit-
ing the available feature subsets to history as well as the 
widely available tests of audiogram and caloric testing. The 
other (“Tier 3”) used only features from the history, which 
is available to all healthcare practitioners including the pri-
mary care setting. The feature subsets used in each tier are 
summarised in Fig. 2b.

Model development, validation and evaluation

Model development, validation and evaluation were per-
formed using the scikit learn Python machine learning 
library version 0.24.2 [27]. For each of the three simulated 
clinical settings, we developed ten models by applying each 
of ten machine learning classification algorithms (XGBoost 
[4], logistic regression [40], K-nearest neighbour [28], deci-
sion tree [30], random forest [3], passive aggressive classi-
fier [7], support vector machine [6], multilayer perceptron 
[34], gradient boosting classifier [10] and AdaBoost classi-
fier [36]) to the corresponding data tier. For model valida-
tion, we employed tenfold stratified cross-validation. This 
method splits the data into ten subsets, uses nine for model 
training and one for testing, and then repeats the process 
nine more times by setting aside a different subset as the test-
ing set each time. This technique provides more robust and 
reliable results than testing against a single dataset for vali-
dation. We used the same seed value of 42 to allow for repro-
ducibility and comparison between algorithms. Metrics of 
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model performance were obtained from the cross-validation 
results as per the statistical analysis section below. Hyper-
parameter tuning was not carried out since satisfactory 
results were achieved using base algorithm parameters. See 

Supplementary Methods for further details of the machine 
learning methodology including pre-processing.

Using the above methods, we developed proof-of-
concept models which can be further refined into tools 
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to assist medical practitioners. Figure 3 summarises the 
workflow we used to design our models.

Statistical analysis

Model performance was evaluated using the metrics 
(“performance metrics”) of accuracy, precision, sensitiv-
ity, weighted F1-score, specificity and the area under the 
curve (AUC) from the receiver operating characteristic 
(ROC) curve. For calculation purposes, VM was defined 
as the positive diagnosis. Our two classes of VM and MD 
had relatively balanced representation in the dataset, and 
there was no preference between the two classes, mean-
ing that false negatives and false positives were equally 
important. Thus, we employed accuracy as the primary 
metric to evaluate model performance. However, as the 
classes were not perfectly balanced (42% to 58%), we also 
considered the weighted F1-score as an alternative metric 
which takes in account this class imbalance. The mean 
value and 95% confidence interval for accuracy and the 
mean values for the other performance metrics were cal-
culated by treating the ten iterations generated by cross-
validation as the sample set.

Results

Patient characteristics

We collected data from 274 patients, of whom 160 (58.4%) 
had VM and 114 (41.6%) had MD. Select characteristics 
of each patient group are shown in Table 1, and the full 
list of characteristics is available in Supplementary Table 2. 
For both diagnoses, we did not make a distinction between 
patients with probable versus confirmed disease.

Machine learning model performance

Model performance for each tier

Tier 1 (the neuro-otology clinic) was simulated by models 
which used all the feature subsets (history, VNG and all four 
laboratory tests). Most algorithms generated models with 
accuracies above 95% (Table 2). The best performing model 
used AdaBoost and achieved 97.81% accuracy.

In Tier 2 (the non-expert specialist clinic), the models 
were developed only using the feature subsets of history and 
the two widely available tests (audiogram and caloric test-
ing). Random forest was the best performing algorithm with 
94.53% accuracy.

Fig. 3   Workflow of the Machine 
Learning Methodology. This 
figure illustrates the process we 
used to develop our machine 
learning models for differ-
entiating vestibular migraine 
from Menière’s disease. The 
dotted arrows indicate that this 
was an iterative process. AUC​ 
area under the curve, VEMPs 
vestibular-evoked myogenic 
potentials, VHIT video head 
impulse test, VNG video-nystag-
mography

Learning Algorithm Development

Define Problem Statement
Understand Context

History
VHIT

VEMPs

VNG

Audiogram

Weighted F1, Specificity, AUC
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Table 1   Select characteristics 
of patients

Menière's disease (n = 114) Vestibular 
migraine 
(n = 160)

History
 Sex, female, n (%) 55 (48.2) 108 (67.5)
 Age at clinical presentation, years, median (IQR) 61.0 (47.5–70.0) 48.0 (38.0–59.0)
 Disease duration, years, median (IQR) 3.0 (1.0–7.0) 3.0 (1.0–9.3)
 Vertigo trigger, n (%)
  Spontaneous 85 (74.6) 70 (43.8)
  Positional 0 (0) 11 (6.9)
  Both 29 (25.4) 79 (49.4)

 Longest duration of attacks, n (%)
  Seconds 0 (0) 4 (2.9)
  Minutes 4 (3.7) 17 (12.2)
  Hours 88 (80.7) 34 (24.5)
  Days 17 (15.6) 59 (42.4)
  Weeks 0 (0) 10 (7.2)
  Constant 0 (0) 15 (10.8)

 Tinnitus, n (%)
  Unilateral 93 (89.4) 26 (18.2)
  Bilateral 5 (4.8) 41 (28.7)

 Aural fullness, n (%)
  Unilateral 77 (81.9) 18 (12.6)
  Bilateral 3 (3.2) 22 (15.4)

 Subjective hearing loss, n (%)
  Unilateral 85 (90.4) 7 (5.4)
  Bilateral 6 (6.4) 13 (10.1)

 Headache, n (%) 50 (56.8) 123 (83.1)
Video-Nystagmography
 Spontaneous nystagmus, n (%)
  Horizontal 66 (94.3) 53 (47.3)
  Vertical 4 (5.7) 29 (25.9)

 Direction-changing spontaneous nystagmus, n (%)
  Occurring at < 12 h 27 (38.6) 5 (4.5)
  Occurring at > 12 h 15 (21.4) 0 (0)

 Spontaneous slow-phase velocity, °/s, median (IQR) 34.0 (21.7–54.8) 3.0 (0.0–7.0)
Video Head Impulse Test
 Right horizontal canal gain (raw), median (IQR) 1.00 (0.95–1.05) 0.99 (0.93–1.06)
 Left horizontal canal gain (raw), median (IQR) 0.93 (0.87–0.99) 0.91 (0.87–0.99)

Vestibular-evoked myogenic potentials
 Air-conducted cVEMP asymmetry, median (IQR)a 20.5 (9.0–100.0) 12.2 (5.0–20.2)
 Bone-conducted oVEMP asymmetry, median (IQR)a 13.8 (7.6–21.0) 8.3 (4.4–13.1)

Audiogram
 Affected Ear 250 Hz threshold, dB HL, median (IQR)b 55 (40–65) –
 Unaffected Ear 250 Hz threshold, dB HL, median (IQR)b 15 (10–20) –
 Right   ear 250 Hz threshold, dB HL, median (IQR) – 10 (5–15)
 Left ear 250 Hz threshold, dB HL, median (IQR) – 10 (5–15)
 Affected ear 500 Hz threshold, dB HL, median (IQR)b 55 (40–60) –

Unaffected ear 500 Hz threshold, dB HL, median (IQR)b 13 (10–20) –
 Right ear 500 Hz threshold, dB HL, median (IQR) – 10 (5–15)
 Left ear 500 Hz threshold, dB HL, median (IQR) – 10 (5–15)
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See Supplementary Table 1 for variable descriptions, and Supplementary Table 2 for the full list of charac-
teristics
cVEMP cervical vestibular-evoked myogenic potentials, dB HL decibels hearing level, oVEMP ocular ves-
tibular-evoked myogenic potentials
a Absolute values used to calculate these summary statisticsn
b Affected and unaffected ear values shown for illustrative purposes only; affected ear was not labelled for 
model development

Table 1   (continued) Menière's disease (n = 114) Vestibular 
migraine 
(n = 160)

Caloric testing
 Caloric canal paresis, %, median (IQR)a 39 (21–59) 11 (6–21)

Table 2   Performance metrics 
of machine learning models 
for differentiating between 
vestibular migraine and 
Menière’s disease

Values are %, with 95% confidence interval in parentheses for accuracy
AUC​ area under the curve, XGB XGBoost, LR logistic regression, KNN K-nearest neighbour, DT decision 
tree, RF random forest, PAC passive aggressive classifier, SVM support vector machine, MLP multilayer 
perceptron, GBC gradient boosting classifier, ABC AdaBoost classifier

Algorithm Used Accuracy Precision Sensitivity Weighted F1 Specificity AUC​

Tier 1: All data used for model development
 XGB 96.72 (95.24–99.60) 97.30 94.74 96.71 98.13 96.43
 LR 97.08 (95.41–98.74) 97.32 95.61 97.08 98.13 96.87
 KNN 92.70 (92.25–98.28) 91.96 90.35 92.69 94.38 92.36
 DT 89.42 (82.62–95.56) 90.48 83.33 89.34 93.75 88.54
 RF 96.35 (92.57–100.00) 96.43 94.74 96.35 97.50 96.12
 PAC 97.45 (95.39–98.73) 97.35 96.49 97.44 98.13 97.31
 SVM 95.62 (94.57–98.10) 98.11 91.23 95.59 98.75 94.99
 MLP 95.62 (95.96–99.65) 93.22 96.49 95.63 95.00 94.99
 GBC 91.61 (92.44–98.83) 95.05 84.21 91.52 96.88 89.79
 ABC 97.81 (95.24–99.60) 97.37 97.37 97.81 98.13 97.75

Tier 2: Only history, audiogram and caloric testing used for model development
 XGB 93.43 (91.90–97.97) 92.86 91.23 93.42 95.00 93.11
 LR 93.43 (92.38–97.43) 92.11 92.11 93.43 94.38 93.24
 KNN 89.42 (89.65–96.41) 86.32 88.60 89.43 90.00 89.30
 DT 89.78 (84.16–93.25) 89.09 85.96 89.75 92.50 89.23
 RF 94.53 (91.09–99.52) 93.81 92.98 94.52 95.63 94.30
 PAC 92.34 (90.73–96.86) 91.15 90.35 92.33 93.75 92.05
 SVM 93.43 (91.14–97.19) 92.86 91.23 93.42 95.00 93.11
 MLP 91.24 (92.31–96.76) 89.47 89.47 91.24 92.50 93.11
 GBC 91.97 (89.61–96.64) 93.40 86.84 91.92 95.63 91.67
 ABC 93.43 (90.09–96.86) 92.11 92.11 93.43 94.38 93.24

Tier 3: Only history used for model development
 XGB 90.51 (90.72–96.16) 90.00 86.84 90.48 93.13 89.98
 LR 90.15 (90.76–96.14) 89.91 85.96 90.11 93.13 89.54
 KNN 85.77 (85.95–94.23) 84.40 80.70 85.72 89.38 85.04
 DT 89.78 (85.05–92.41) 89.09 85.96 89.75 92.50 89.23
 RF 92.34 (92.28–96.76) 94.29 86.84 92.28 96.25 91.55
 PAC 90.88 (89.52–93.74) 90.09 87.72 90.86 93.13 90.42
 SVM 91.97 (91.98–96.36) 91.82 88.60 91.95 94.38 91.49
 MLP 89.05 (89.90–95.49) 88.18 85.09 89.02 91.88 91.49
 GBC 89.42 (90.56–94.84) 89.72 84.21 89.36 93.13 89.11
 ABC 89.42 (89.45–93.76) 88.99 85.09 89.38 92.50 88.79
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Models in Tier 3 (the primary care setting) used only 
features from the history, which is available to all healthcare 
practitioners. In this setting, the best performer was random 
forest with 92.34% accuracy.

Table 2 shows the complete performance metrics for all 
models in all three tiers. Accuracies ranged from 85.77 to 
97.81%, indicating that all algorithms performed well across 
all tiers. Although accuracy was our primary metric, the 
models performed consistently well across the full range of 
performance metrics. The algorithms which achieved the 
highest accuracy in each tier also had the highest weighted 
F1-score and AUC values in that tier, indicative of robust 
model performance.

Figure 4 shows the ROC curve and corresponding confu-
sion matrix of the model generated by the top-performing 
algorithm for each of the three clinical settings. The ROC 
curves shown were the mean ROC curves calculated from 
tenfold stratified cross-validation. All three mean ROCs 
passed close to the upper left corner, which indicated that 
the machine learning models were robust and were close in 
performance to an ideal classifier. The best ROC curve in 
Fig. 4 was obtained by the model which used AdaBoost on 
all the features in the dataset.

When comparing the algorithms across all three simu-
lated clinical settings, we see that the top algorithms (Ada-
Boost and random forest) did well across all six performance 
metrics in all tiers.

Comparison of history, VNG and vestibular function tests 
in isolation

We also assessed how each of our six feature subsets per-
formed individually at classifying VM and MD. We did this 
by taking AdaBoost as the preferred algorithm and com-
pared the accuracies of models developed using AdaBoost 
on datasets limited to the features from that subset. The 
history was the best performing feature subset for distin-
guishing between VM and MD with an accuracy of 89.42%, 
followed by the audiogram (accuracy 87.23%). Next, acute 
VNG and caloric testing were similarly useful with accura-
cies of 68.61% and 67.15%, respectively. VEMPs and VHIT 
performed less well with accuracies of 59.85% and 51.82%, 
respectively.

Best performing combinations

We used AdaBoost to develop models using every combina-
tion of the six feature subsets (history, VNG, VHIT, VEMPs, 
audiogram and caloric testing). In total, there were 63 (i.e. 26 
minus 1) combinations, and the performance of these mod-
els is shown in Supplementary Table 3. Interestingly, one 
combination (history, VNG, VHIT and caloric testing) had 
a slightly higher accuracy (98.18%) than the model which 

used all the data (97.81%), and another combination (history 
and VNG) had the same accuracy. Sixteen combinations had 
an accuracy of 95% or more, and history and VNG were 
common to all of these combinations. When VNG was not 
available, then the best combination which used no more 
than two laboratory tests (in addition to the history) was 
history, audiogram and caloric testing (93.80%). Most com-
binations (36 out of 63) reached an accuracy of 90% or more.

Discussion

In this study, we developed machine learning models for 
classifying patients with recurrent vertigo as either VM or 
MD based on information from history, VNG and four labo-
ratory tests. In real-world clinical practice, a neuro-otologist 
may have access to all the laboratory tests, but the non-expert 
specialist may only be able to access some of these tests, and 
the primary care physician may rely on the history alone. 
To simulate these conditions, we applied machine learning 
techniques to limited datasets. For the neuro-otologist set-
ting, the top model which used all the features performed 
excellently with 97.81% accuracy and unsurprisingly was the 
best performing model overall. For the non-expert special-
ist setting, limiting the features to history, audiogram and 
caloric testing still produced a model which performed very 
well with 94.53% accuracy. Even when only features from 
history were used, the top model still achieved an accuracy 
of 92.34%. These results hold great promise for an accurate 
classification tool for recurrent spontaneous vertigo usable 
by all healthcare practitioners, including the primary care 
and rural settings where VNG and laboratory tests are often 
not available. Such a tool would also be valuable for clini-
cians who lack experience applying the diagnostic criteria or 
who do not have all the information that is required.

Comparison with earlier studies

Unlike other studies of machine learning in vertigo syn-
dromes [16], we limited our study to two similar conditions 
that often present with recurrent spontaneous vertigo. This 
syndrome is straightforward to identify even for non-spe-
cialist doctors and allows the diagnosis to be narrowed to 
the two common culprits of VM and MD. An earlier study 
[11] also applied machine learning techniques to identify 
VM and MD as causes of recurrent spontaneous vertigo. 
They used data from DizzyReg, a registry of information 
from patients with dizziness, including demographics, his-
tory, physical assessment, test results and treatment. Models 
using boosted decision trees achieved accuracies of 84.5% 
and 93.3% for identifying VM and MD, respectively, while 
deep neural network models reached superior accuracies of 
98.4% and 98.0%. However, their models were developed 
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only to identify either VM or MD from all the other diagno-
ses in the registry, which included conditions such as benign 
paroxysmal positional vertigo and vestibular failure that 
do not present as recurrent spontaneous vertigo and hence 
may have been easier to distinguish. Another study using 
the EMBalance decision support system [9] took a simi-
lar approach of developing binary classification models to 
identify each of 12 differential diagnoses (including VM and 
MD) from all other diagnoses in a dataset of patients with 
balance disorders. Like our study, in addition to using all the 
variables for model development (simulating the “expert”), 
they also used a limited dataset to mimic the primary care 
setting. This dataset included information from the history 
and excluded laboratory test results, but in contrast to our 
study also utilised findings from bedside examination, which 
untrained primary care physicians may not be able to con-
fidently perform. Models using their best performing algo-
rithm (AdaBoost) achieved accuracies of 92.1% (expert) and 
89.8% (primary care) for identifying MD and an accuracy 
of 82.9% (both expert and primary care models) for VM. 
The results of both these studies do not reflect their models’ 
ability to separate VM and MD, and this was not assessed. 
In contrast, our models differentiated only between VM and 
MD which share several overlapping features and where 
diagnostic confusion is likely to be the greatest. The greater 
difficulty of separating conditions with similar presentations 
is highlighted by a subsequent study using the DizzyReg 
registry [38]. This study used machine learning models to 
distinguish only between four causes of recurrent vertigo 
(VM, MD, benign paroxysmal positional vertigo and ves-
tibular paroxysmia). Although multi-class classification is 
more challenging, it is still notable that the highest accuracy 
achieved by the many algorithms trialled was only 54.3%.

Another point of difference of our study from previous 
research (other than the aforementioned EMBalance study 
[9]) is our tiered approach to the data. This allowed for the 
development of different models that cater to doctors of 
varying expertise and equipment, and of immense value is 
the model that uses only history and so can be utilised by any 
healthcare practitioner, including in the primary care setting. 
This is important as vertigo is common (4.9% one-year prev-
alence in adults [25]) but patients often have limited access 
to neurologists and otolaryngologists, and neuro-otologists 

are even less available. As an example, from Australian data 
in 2021 [1, 22], there is approximately one primary care phy-
sician per 740 people, one neurologist or otolaryngologist 
per 19,000 people, and one neuro-otologist per 1,270,000 
people.

The best performing model

Regarding which algorithm performed best, AdaBoost had 
the best accuracy in Tier 1, but random forest was the top 
performer in Tiers 2 and 3. However, it is also apparent that 
all ten machine learning algorithms performed very well 
across all three tiers of data availability. The fact that all 
the algorithms could effectively distinguish between the two 
conditions suggests that machine learning techniques are a 
highly compatible approach to this clinical problem.

Based on the results from individual feature subsets, we 
consider the focused history, which yielded the highest accu-
racy by itself, to be indispensable when classifying VM and 
MD. The history was also present in all the top-performing 
feature combinations, as was acute VNG. Furthermore, the 
AdaBoost model used only history and VNG achieved the 
same accuracy as when all the data were used. This par-
ticular result may just have been due to the characteristics 
of this algorithm and/or the dataset, but nevertheless these 
findings emphasise how helpful VNG can be for distinguish-
ing between VM and MD. On the other hand, VHIT and 
VEMPs did not separate VM and MD effectively when used 
in isolation, although they appeared to offer more diagnos-
tic value when taken in combination with the other tests. 
It is important to note that the click stimuli we use in our 
clinic for VEMPs are not as effective as the 500 Hz tone 
bursts at separating MD from normal patients [33]; the use 
of tone bursts may have yielded better results for VEMPs 
in our models. We also appreciate that most clinics do not 
have access to portable VNG for patients to record attacks 
at home when symptomatic, so based on our results, if acute 
VNG is not available, then we recommend audiogram and 
caloric testing as the optimal laboratory tests to comple-
ment the history. An interesting result was that the AdaBoost 
model which omitted VEMPs and audiogram and used only 
history, VNG, VHIT and caloric testing had a slightly higher 
accuracy than when all features were used. This difference 
was small (0.37%), and again this result may be particular 
to the specific algorithm and/or dataset.

Limitations

A limitation of this study is that it was conducted at a single 
site with a limited number of patients and would benefit 
from expansion to other sites in future validation studies 
to demonstrate robust performance of our models. In addi-
tion, our classification models did not allow for patients who 

Fig. 4   Receiver operating characteristic (ROC) curve and confusion 
matrices of the best performing classification model in each simu-
lated clinical setting. a ROC curve and confusion matrix of model 
generated by AdaBoost using features from all data, simulating the 
neuro-otology clinic. b ROC curve and confusion matrix of model 
generated by random forest using only features from history, audio-
gram and caloric testing, simulating the non-expert specialist clinic. 
c ROC curve and confusion matrix of model generated by random 
forest using only features from history, simulating primary care. MD 
Menière’s disease, VM vestibular migraine

◂
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have both VM and MD, as 11–28% of patients will techni-
cally meet diagnostic criteria for both conditions [24, 32]. 
Our models also do not identify other causes of recurrent 
spontaneous vertigo, such as autoimmune inner ear disease, 
posterior circulation ischaemia and vestibular paroxysmia. 
However, these are much rarer than VM and MD [26]. One 
reason our models performed so well is likely to be the fact 
that all our patients met Bárány Society diagnostic criteria 
for VM [17] and MD [18], which requires multiple vertigo 
episodes, and thus they were likely to have a higher preva-
lence of the typical abnormalities. The models may not per-
form as well on patients with early disease and who have 
more limited information on history. Future iterations will 
build on this. Our history was also taken by neuro-otologists, 
and it is possible that a history taken by a less experienced 
clinician in a non-specialist setting may be less accurate and 
may not differentiate between the two conditions as effec-
tively when our model is applied. However, the structured 
nature of our history reduces this variance due to the fixed 
list of questions and responses to choose from.

Summary

In conclusion, we have demonstrated that machine learn-
ing algorithms can effectively distinguish between VM and 
MD as the cause of recurrent spontaneous vertigo using data 
from history, acute video-nystagmography, and laboratory 
tests of hearing and vestibular function. Our models per-
formed well in both expert and non-expert settings and are 
likely to assist most medical practitioners faced with this 
problem.
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